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The object is to predict the nature of small-amplitude long-period oscillations of 
a homogeneous rotating fluid over a ‘sea bed’ that is nowhere level. Analytically, 
we are limited to special choices of bottom topography, such as sinusoidal corru- 
gations or an undulating continental slope, so long as the topographic restoring 
effect equals or exceeds that due to planetary curvature (the beta-effect). (Very 
slight topographic features, on the other hand, provide weak, resonant inter- 
actions between Rossby waves.) 

Integral properties of the equations, and computer experiments reported 
elsewhere, verify the following results found in the analytical models: typical 
frequencies of oscillation are 5 fS, wherefis the Coriolis frequency and &measures 
the fractional height of the bottom bumps; an initially imposed flow pattern of 
large scale will rapidly shrink in scale over severe roughness (even the simplest 
analytical model shows this rapid change in spatial structure with time); and 
energy propagation can be severely reduced by roughness of the medium, the 
energy velocity being of order $&a, where a is the horizontal topographic scale 
(although in an exceptional case, the sinusoidal bottom, the group velocity 
remains finite for vanishingly small values of a). 

1. Introduction 
The complex shape of the ocean bottom and coastal boundaries affects 

currents and waves in many ways, as the diversity of recent literature on the 
subject indicates. Swallow’s discovery of vigorous eddies in the western North 
Atlantic stimulated interest especially in transient motions, for the mean circula- 
tion appears to  be the weaker in the deep sea. The related ‘bumpy spin-up’ 
problem bears on other geo- and astrophysical situations (Hide, private com- 
munication). 

This paper deals with a linearized model of slow oscillations in a homogeneous 
fluid. They are a generalized version of Rossby waves satisfying an equation for 
the local conservation of barotropic potential vorticity. The depth h thus appears 
as a variable coefficient in the two-dimensional wave equation. In  the beta-plane 
approximation, the earth’s curvature provides a uniform restoring effect, which 
is distorted by complex topography. The problem is, a t  first sight, similar to 
classical situations involving membranes of non-uniform mass density or high- 
energy particles moving in a complex potential field. 
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FIGURE 1. Location, with respect to 6 and k, of various theories of waves in non-uniform 
media; 6 is the typical, fractional change in depth, k the initially imposed wavenumber, 
and a the dominant topographic scale. As time progresses, solutions often tend to move 
to the right on the diagram (arrows). 

Most theories for such problems, however, have rather severe limitations, even 
after restricting the dynamics to be linear. Success has depended on the inhomo- 
geneities of the medium being gradual, slight or abrupt. The corresponding 
approaches may be called, respectively, ray theory, resonant interaction. or 
weak-scattering, theory, and Schrodinger, or strong-scattering, theory. In  addi- 
tion certain smoothly varying media yield exact wave solutions in non-trigono- 
metric functions. What is missing from the list is some approach to the problem 
of a medium whose inhomogeneity is neither small nor localized nor gradual. for 
this seems to be the nature of much of the sea bed. 

Figure I is a sketch of these various regions of 6, k space where the theories 
apply, 6 being the typical topographic height divided by the mean ocean depth, 
and k the wavenumber characterizing the initially imposed flow field. If we sup- 
pose the bottom topography to be homogeneous in space and characterized by 
a dominant horizontal scale a, then geometrical optics (gradual variations ; 
Smith 1971; Rhines 1971 a)  apply at theright-hand side, ka 1. Weakscattering 
(slight variations relative to the beta-effect ; Rhines 1970b) occurs where 
S g pa/’ ( N all&), p being dfld (latitude) and Re the earth’s radius. Weak scat- 
tering also applies with long waves in 6 < (kI2J-l (Robinson & Stommel 1959). 
The theory of waves in random media (e.g. Frisch 1968) applies to this last regime, 
but topographic effects are probably too strong to be thus approached. 

The interesting central region ka N 1, 6RJa N I has been penetrated with 
solutions for isolated abrupt variations in the medium (Rhines 1969), but there 
appears to have been little discussion of the case, so relevant to the ocean, where 
the variations in the medium are everywhere significant. [Some computer experi- 
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ments have, however, been done for the related problem of vibrating molecular 
chains of mixed species (Dean 1967).] It is of particular interest to decide what 
characteristic periods and scales of waves then occur, and how efficiently they 
can transmit energy. 

The plan of the paper is, first, to derive a solution for free waves over a sinn- 
soidal bottom in 8 2. There is no average restoring effect (/3 = 0) ,  yet waves persist 
even at scales much greater than that of the bottom (this is a peculiar limit of 
Mathieu’s equation). 

A smooth restoring effect (,&effect or a broad bottom slope) is then included, 
and a slight extension made to the case with several Fourier components of depth 
(yet all oriented in the same direction). Scales L 5 a for which the above solution 
fails (the very centre of figure 1) are considered, using known properties of 
Mathieu’s equation. Roughly the same frequency, N fS, occurs but energy 
propagation is severely reduced. For L < a, the ray-theory limit, the channelling 
of waves along f / h  contours becomes nearly total. 

In  § 3 a three-dimensional sea bed is allowed. The perturbation approach for 
slight depth variations is criticized. Simple solutions are found for the depth 
dependence h = H exp (e-z sin y), where (x, y) are horizontal co-ordinates. The 
tendency of three-dimensional topography to reduce the energy flux is discussed. 
Integral properties of the equations are invoked here to suggest that the pre- 
dicted time and length scales are generally similar to those found above. A new 
approach to the ‘very’ rough problem is outlined, and some analogous behaviour 
from solid-state physics described. An appendix gives some general properties of 
the eigenvalue problem for a closed basin. 

2. Two-dimensional topography 
The linearized inviscid equation for waves of low frequency in a homogeneous 

B-plane ocean describes the changes in relative vorticity due to motion northward 
or up a slope: 

(2.1) 

Here, @(9,ij)e-iut is the total stream function for the mass flux, 09 and 09 
Cartesian axes directed east and north respectively, t the time, h the depth of the 
fluid (ignoring for simplicity motion of the free surface), f the latitude-dependent 
Coriolis parameter and P a vertical unit vector. The assumption of linearity 
requires e /8  < 1 , e  being the Rossby number U/fa, based on the horizontal scale 
of the topography a, typical velocity U and typical fractional height of the 
roughness 8. It is a severe restriction saying that the excursions of the particles 
must not. carry them completely over the bumps of interest. Scales a so small that 

> i are effectively smoothed by the nonlinearities, if they involve no net 
change in depth. The assumption of columnar motion implicit in (2.1) is more 
easily satisfied, essentially requiring (oH/ fa)2  < 1 for an f-plane model. Fre- 
quently this means just that the bottom slope @ I .  The neglect of stratification 
implies NH/fa I ,  where hT is the mean buoyancy frequency. 
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Long waves over a sinusoidal bottom 

We consider first the solutions when the depth h(y) has straight contours and 
undulates in a continuous sine wave. For simplicity f is at first taken to be 
constant (no /3-effect), so that in the absence of topography there would be no 
waves at all. The height of the undulations is kept small but this is a secondary 
matter. With 

lnh = 1+6sin(j)/a)+lnH 

and separating out a wavelike dependence on 2 and t ,  the equation is nearly 
Mathieu's equation: 

pug - S cos yGy + [ - k3 + ( S k / o )  cos y] fi = 0,  ( 2 . 2 )  
where 

$ = $(y) ei&-gt) , (x, y) = (%/a,@/a), w = n/f, k = la .  

The classical solutions describing the stabilization of an inverted pendulum by 
the oscillation of its support hint that, in the present problem, some sort of wave- 
like solutions will be found (and be well behaved in an unbounded medium) even 
when the restoring effect (the bottom slope) vanishes in the mean. 

General considerations show that 0) 5 6, so that we adopt the scaling 
o N 6 N k 1 appropriate to long waves. Then the topography is far more 
important in the vertical stretching (the last term) than in the second term. 

A long-wave expansion may be made in powers of k, allowing $ to  depend 
separately on y and Y = k y :  

yielding 
$ = p y y ,  Y)+k@("(y, Y ) +  ..., 

1 = 0 a t  O(l) ,  

I (2.3) 

Requiring each $(n) to be bounded as y + 00 with Y fixed, the first two orders 
yield 

The O(k2)  equation is then 

fl0) = ?p( Y )  only, $ ( I )  = (S/ w )  cosy7p). 

Now terms independent of y (the left-hand side) must sum to zero to prevent 
secular growth of @(2). This determines the gradual variation of $@): 

$yy + l$(d/w)2 - 11 $(O) = 0, 
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so that there are solutions 

with B defined as the angle between the propagation vector k = k( 1, A) and the 
depth contours. The remaining terms may be integrated directly to give y!d2), the 
bounded correction to the wave function. The solution is a long wave of $ (or 
pressure, or sea-surface elevation) with topographic-scale ripples on it, of relative 
amplitude - k: (and higher corrections +(a) N k"). This means that the velocity, 
and hence the energy, is about equally shared between the long and short scales. 

The frequency is of the same order as with isolated topographic features of the 
same height, and does not depend on the wavelengtih, however great. The group 
velocity C, is therefore at right angles to k: 

C, = fV,w = (f6/24K) sin 8 ( - sin 8, cos 8), 
K2 = k2( 1 + P). 

A slight rotation of k towards the depth contours raises the frequency, and this 
is the sense of the group velocity vector. Its magnitude is greatest when it lies 
along the depth contours (IC,l = (f8/24K) sin@, analogous to the role of the 
horizontal with internal waves in a non-rotating stratified fluid. In  this limit the 
frequency vanishes, showing how a geostrophic flow along contours would 
penetrate at a rate - fSL away from a slowly moving source of energy, L being 
the characteristic scale of the source. This sort of blocking effect and its similarity 
to the Taylor column. has been described elsewhere (Lighthill 1967 ; Rhines 1969). 

The bottom slopes vanish in the mean and it is at first sight surprising that 
their effects do not cancel in the limit of infinite wavelength (or, equivalently, 
infinitely fine-grained topography). The stretching of vortex lines, however, 
becomes relatively more powerful in the same limit, and the opposing tendencies 
just balance. 

This system is thus capable of rapid energy transmission, for it supports very 
long waves. The large group velocities are, however, entirely due to the anisotropy 
of the medium; with topography that is statistically isotropic, the propagation is 
likely to be far less efficient. 

A physical interpretation 

The mechanism by which two very different scales of motion interact to produce 
a wave may be seen by re-examining the perturbation sequence. Consider an 
initial displacement E of the fluid in the y direction, normal to the depth contours. 
Fluid moving through changing depth alters its vorticity by an amount 
dc f E / a ,  producing a, small-scale pattern of velocity, to the right at  the peaks 
and to the left in the troughs (figure 2a). Alternatively, one may think of the 
effect of the increasing Coriolis force on fluid accelerated (by continuity) as it 
moves up a slope. Note that these new long-slope velocities have no coherence on 
scales larger than that of the corrugations, a. 

If, now, the initial displacement is made to vary gradually in magnitude (i.e. 
on a, scale k-1) in the x direction, the induced vorticities will do the same, reversing 
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( 0 )  

FIGURE 2. Schematic of oscillations over a, sinusoid. (a) Vorticity due to an imposed 
displacement %. ( 6 )  Effect of varying E along contours. (c )  Velocities corresponding to this 
pattern. ( d )  Large-scale vorticity induced by velocities in ( c ) ,  opposite in sense to the 
original displacement. 

in sense over a half-wavelength of the 3 variation (figure 2 b ) .  These opposing 
vorticities induce new flow downhill, off the ridges, everywhere near the node of= 
(figure 2c). The downhill speed v is O(kf&a%) and stretches the vorticity in a broad 
region at  a rate proportioiial 60 E (figure 2 d )  : 

agat  = O(f&v/a) = O(( f8 )2kE) .  

d2E/dt2 = - O(f28%) 
This gives an acceleration 

in response to a displacement, which is the essence of a wave. 
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iVumerica1 veri$cation 

The problem was also solved numerically on a CDC-6600 computer, by inte- 
grating the finite-difference form of the vorticity equation on a 64 x 64 grid. An 
initially sinusodial pattern of velocity, directed straight across the depth con- 
tours, was allowed to evolve freely in time. A smooth periodic oscillation, 
figure 3 ( b )  (plate l),  then occurred, and ran for many cycles with gradual viscous 
decay. The topography for this run, figure 3 (a) (plate l), was a sinusoid of wave- 
length one eighth of the width of the domain. The boundary conditions were 
periodic in both directions, making the geometry infinite, in effect. The frequency 
w was 0.668, compared with 2-38frorn the theory. A 7 % discrepancyis acceptable, 
since the small parameter of the theory, a/L, was equal to t .  Runs for shorter 
waves, a /L  = 4, were surprisingly similar to those for alL = &, even though the 
long-wavelength theory is not then formally valid. (The frequency dropped to 
0.648 in that case, but the oscillations were still ‘pure’.) 

Figure 3 (c)  shows the initial streamline pattern, representing flow towards the 
bottom of the page in the centre and flow towards the top at  the sides of the figure. 
Just after the beginning of the sixth wave period, figure 3 (a?) shows the deflexions 
caused by vortex stretching. By figure 3(e) (plate 2) the motion hasshiftedentirely 
to the topographic scale, but these eddies gang up and form a purely large-scale 
motion opposite to  the initial one (figures 3 f, 9 ) ;  the mean flow averages to zero. 
Figure 3 (h) shows the mid-point of the period. The relation of figure 3 to figure 2 
should be quite clear. 

It is interesting that, when the experiment was repeated, but including the 
nonlinear terms neglected in the theory, the results were substantially the same 
until the fluid particles were set off fast enough to surmount a ridge or trough 
completely. Solutions for very large initial velocities resemble simple meandering 
flows, with a non-vanishing mean component across the contours. At inter- 
mediate amplitudes, when the solutions are still waves, a mean Lagrangian drift 
of particles occurs along the contours, in accord with the theorem of Moore 
(1970). Further computer experiments have been assembled into a movie. 

Slight generalization 

The calculations are readily repeated with several Fourier components of the 
depth h(y)  present. The result analogous to (2.4) is just 

w2 = cos2 e, 
depending only on the root-mean-square roughness height. The convergence 
worsens as the number of components is increased, however, and if the analysis 
is attempted with h ( y )  a stationary random function, it fails. To see this, consider 
the successive corrections p*), which involve repeated integrals of h(y) .  The 
first, +(I), is proportional to 

p ( Y 9  dY* + C l Y  + c2. 

The linear term will cancel the dominant part of the integral if c1 = - H ,  the mean 
depth. The remainder, however, is also divergent; it  is like the displacementi at  
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time y due to a random walk with speed h(y)-H, which diverges like (y/a)h, 
where a is the correlation length of the topography. 

The effect of ,4 
With a smoothly sloping bottom, or ,&effect, simple Rossby waves will compete 
with these solutions. Their two frequencies, N 6 and N LIR, respectively 
(R = Retan (latitude) where Re is the radius of the earth), are a measure of the 
strength of restoring forces, and the nature of the solutions should thus depend 
on the size of SRIL. 

Let us scale the effects to have equal stature, 6RIL N 1 (which is not the same 
as saying that the bottom slopes are comparable with the equivalent-,8 slope 
HIR; they may be much steeper). Now the scheme already developed had 
8 N k = a/L, the ratio of topographic to wave scales, SO that 

LIR N k 

and the Same expansion parameter k describes both the modelling of the sphere 
by its tangent plane and also the separation of topographic and wave scales. 

The previous equations need only be slightly modified. Suppose that the cor- 
rugations run east and west. Then the northward advection of planetary 
vorticity, and the variation off alter (2.2) to read 

ak  ( f( ?) ) wR 
&,-Scosy$,- k2+- I + -  cosy $--$ = 0, 

where, now, 
0 = qKl, f = f o ( l  +aY/R)> 
R = Re tan (mean latitude). 

The variation off with latitude - aylR - k2y is only O ( k )  over a wavelength. 
The final, ',8$,', term N a/R N k2, so that we again obtain the first two of 
equations (2.3). The third, O(k2) ,  equation becomes 

All coefficients are order unity. The left-hand side is a function of Y alone, and 
must vanish by itself. The right-hand side gives the O(k2)  corrections to $. Note 
that the last term leads to a mild divergence over many wavelengths. This is a 
familiar problem with P-planes, and should not destroy the local correctness of 
the result. One may, as alternatives, include more stretched y-scales or retreat to 
an equivalent-slope model. 

The large-scale behaviour has wavelike solutions 

@(O) = expi(kx+Zy-uwf,t), 
with dispersion relation 

1 S2k2 w--- = ak 
W2+-R(k2+z2) 2 k2+P 



Topographic Rossby waves 591 

7 - 3 - 2  - I  0 1 - 3 

kRS/a 

FIG- 4. Dispersion relation for long waves (L S a)  over a sinusoidal bottom, including 
the p-effeot, k = 1, showing the transition from Rossby to 'roughness' waves. 

(reorienting the depth contours to lie at  an angle a from east merely alters the 
middle term to 

1 [- R k2+12 

a kcosa-lsina 

where k and 1 are wavenumbers along and across the slope, respectively). 
Figure 4 shows the dispersion relation (2 .5)  with k set equal to 1, to show the 

effects of scale rather than anisotropy. The left-hand curve crosses from the 
Rossby to the topographic asymptote where the frequencies due to those effects 
taken separately are equal, that is, where 

as anticipated. 
6RILw 1, w - $ 3  

Forced waves 

Suppose that a wind-stress curl (V x T ) ~  of large scale drives the vorticity equa- 
tion, with the bottom corrugated and f again a constant. For a single Fourier 
component 

(V x ~ ) , / p ,  = A exp i(kx + 1 Y - fw,t) 

the right-hand side of (2.2) becomes 

a2A eilylj'w,,, 

with 1 = O( 1). The rule that, at each order in the two-scale expansion, 3'") must 
be bounded as y -+ co with Y fixed prevents the forcing term from appearing until 
the third, O(k2),  equation of (2.3). Then the slowly varying part of the equation 
becomes 

which has a familiar resonance structure: 



592 P. Rhines and F .  Bretherton 

with $(l) related to $(O) as before. This illustrates the direct shortening of length 
scale that occurs between the forcing function and the response; the topograpliic- 
scale velocities due to $(l) are of the same order as the large-scale velocities unless 
the system is being forced far from resonance. 

Waves with the scale of the topography 

The perturbation scheme accounts for both large- and small-scale depth varia- 
tions, but the intermediate scales are also important. Indeed, in weak scattering 
problems, these are dominant. They lead to *he analogue, over continuous topo- 
graphy, of the lower-mode trapped waves found with idealized, isolated sea- 
mounts and steps. In  a sense they are again the ‘gravest’ modes, having the 
highest possible frequencies, and seem to make the most efficient use of the 
bottom bumps by mimicking their horizontal scale. 

Detailed solutions are, of course, intricate. We continue to consider sinusoidal 
corrugations, for which (2.2) is a Mathieu equation (accepting errors of order 6). 
For simplicity we take /3 = 0, leaving 

g, + (p - 2q cos 22) g = 0, 

where A 

p = -&, q = 2 k 8 / ~ ,  z = y/2a, 6 = ka, 
h = H(1+6siny/a), 6 < 1. 

$ = g(z) ei(kr-wf,t) .  

A dispersion relation may be constructed for all wavelengths, thus incorpo- 
rating our earlier perturbation results. The nature of the solutions is determined 
by the values of p and q. In  the shaded portions of figure 5 (normally called the 
stable region), g has wavelike solutions in z, eiu2P(z), where P gives fhe local 
structure, being periodic with period 1~ or 2n. Elsewhere in the figure (the 
‘unstable’ region) no solutions are found that remain bounded in Iz/ < co. The 
divergent solutions represent parametric instability in problems where z repre- 
sents time, but no such interpretation is valid here. 

The dispersion curves are found by fixing E ,  thus defining a locusp = constant 
(<  0) on figure 5. Contours of v are plotted in the shaded bands (see standard 
works like McLachlan 1947, p. 98). By moving along the locus marked A we can 
read off q, and hence the frequency, as a function of wavenumber, but it is clearer 
if the total wavenumber vector (12, &v) is held in the same direction while its 
modulus is varied. Fix the propagation direction at, say, 45’ relative to Oz 
(f = iv) and allow v to increase from zero, following locus B, figure 5 .  The 
resulting dispersion curve, figure 6 (a) ,  shows little variation for the longer waves. 
Thus the estimate w - 6 holds, rather remarkably, for all scales greater than that 
of the topography. The asymptotic result for long waves 

1 + 4(&7rZ- 1)  $2 

2 + v2/2@ 
0 2  = 62 

is also plotted (dashes). Obtained from standard Mathieu formulae, it gives 
the first correction to the perturbation theory. 
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FIGURE 5 .  Mathieu chart for oonstructing the dispersion relation of waves over ahsinusoid 
(figure 6 4 .  p and q are functions of frequency and the long-slope wavenumber k. Propa- 
gating solutions are found in shaded regions. Along locus A,  f is fixed and the upslope 
wavenumber &v is read off as a function of p (hence 0) .  (v is contoured with dashed lines.) 
Along B the angle of propagation is fixed. C is the locus one would follow i f g  were included 
and topography slight. 

At Y = 1, where the wavelength is twice that of the corrugations, we run off 
the shaded limb on locus B, and must climb to the next one; the frequency 
changes drastically. Each time $gains another zero over one cycle of topography, 
the frequency drops to a lower level. The dispersion curve thus shifts from a 
continuous spectrum to a discrete spectrum of locally trapped oscillations, 
familiar in the quantum-mechanical band theory of crystalline solids. If /3 is 
retained and k fixed one follows loci like C, figure 5, to  construct the dispersion 
curve. The particular case shown represents a slight topographic perturbation to 
simple Rossby waves (see Rhines 1970b) .  

The form of the z dependence of the stream function (or, approximately, the 
free-surface elevation) is sketched in figure 6 (b). It is apparent that only for very 
small, or very large, v is it sensible to attribute to  the motion a definite wave- 
number. For very short waves a WKBJIAiry solution can be constructed for 
each trough, representing the guiding of rays along contours of depth. If we had 

38 FLM 61 
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FIGURE 6. (a) Dispersion relation over a sinusoid, arbitrary wavelength, constructed from 
figure 6 ,  locus B ; k = +v. Note small change in frequency for wavelengths greater than twice 
that of the bottom, large changes elsewhere. ( b )  Examples of the dependence of @ on y (it is 
purely sinusoidal in r) for (ii) v < 1, (iii) v N 1, (iv) v S 1. (i) Underlying topography. 

only a half-cycle of $he sinusoidal bottom, such thati the slope were of one sign 
and joining two featureless plains, the solutions would be appropriate to trapping 
in a single potential well. With k fixed, w would take on a discrete seti of values 
corresponding to integral jumps in the wavenumber. 

Now how do the adjacent ridges and troughs alter the shorter trapped waves? 
If v differs only slightly from an integer, for instance, g(z) is a series of potential- 
well oscillations, very slowly modulated in space. w changes slightly within each 
zone n < v < n + 1 and awlav gives the rate at which the modulation moves across 
the topography. Thus bhe slight change in frequency within each band represents 
the leakage from one well to the next. The normal modes may be combined in 
physically interesting ways. Those corresponding to v = n and v = n + 1, for 
example, are Mathieu functions which are even and odd, respectively, about 
z = 7 ~ .  When added they form, initially, a potential-well solution in every second 
well, with intervening regions quiet. As time goes on this pattern disappears, 
reappearing in the adjacent empty wells. 
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In  this limit the theory is a clumsy way of describing the leakage of energy 
through the potential barriers. A perturbation scheme based on the weakness of 
the coupling between wells produces the slowly modulated solutions more readily. 

This example has shown a limiting behaviour of refractive trapping, of smooth 
long-wave propagation over roughness, and a sort of ‘gravest’ mode in between, 
which is, like the short waves, quite immobile. Despite an idealized nature it 
illustrates those solutions with L - a that are likely to be the most vigorous over 
a bed of complex hills and valleys, and suggests how small the energy propagation 
is then likely to be. 

3. Three-dimensional topography 
Some of the previous results carry with them implications about the more 

difficult case of curved depth contours. The group velocity for long waves, 
L 9 a, owed its existence entirely to the anisotropy of the sinusoidal bottom: 
rotation of the wave crests altered the frequency. If similar long waves were to 
exist over isotropic roughness, their group velocity might thus be far smaller. 
Also recall that the frequency due to a small-scale sinusoid (L & a )  and the 
frequency due to ‘undulations’, of scale a N L, were nearly the same, w N 6. In  
a crude way, this also says that the group velocity should be small, for the depend- 
ence of frequency on wavelength over this broad range of scales is so very small. 
It also suggests that the response frequencies of an ocean with a very rough 
bottom may be quite insensitive to the initially imposed scale of the currents, if 
it is smaller than N 6R and hence out of the range of p. The horizontal scale of the 
roughness itself appears to be relatively unimportant to the resulting oscillation 
frequency (but it does control the scale of the currents). 

The most misleading feature of the model with a sinusoidal bottom is probably 
its ability to support waves of scale large compared with that of the topography, 
Evidence against the existence of such long waves over three-dimensional topo- 
graphy is the failure of the long-wave perturbation theory ($2)  for even a simple 
tessellated pattern of depth contours. The smooth channels of communication 
afforded by the straight ridges and troughs are no longer present, and no slight 
perturbation of a long wave satisfies the equation. The scale of $ must be at  least 
as small as that of the roughness, until /3 or broader slopes become dominant 
(further support appears in the following subsections; the implications for the 
energy flux of this smallness of the motion scale will be discussed). 

Slight three-dimensional roughness 

One analytical approach is to make the roughness inferior to slopes or /3, and 
consider the scaling (L/R)2 < 6 < L/R < 1 rather than the previous case of 
equal strength, 6 N LIR. Supposing that 

(2.1) becomes 
$ = p o )  + 6p1) + . . . , 

2p) = 0, 
9 $ ( 1 )  = (iwfo)-l ( V l p  x V ( f / h ) )  . I ,  

38-2 
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where 2 = V2 + (iwR)-l a/ax. Now in this limit the various Fourier components 
of the depth may be treated individually, then superimposed. With the bottom 
profile again being h = H (  1 + Ssin y/a), and 

we find 
+(O) = A exp i (kx  + Zy - w(0)fOt), do) = - k/R(k2+E2), 

k2+(Z+a--1)2+k/wR 1 ' * ' *  * 

k expi[kx + ( 1  - a-1)y - @jot] expi[kx+ (1 + a-l)y - wfot] 
'(l) = 6w [ k2 + (I - a-1)2 + k/wR 

When the denominators vanish this ordering breaks down, and a resonant inter- 
action theory (Rhines 1970b) shows how two Rossby waves of the same frequency 
trade energy back and forth, via a catalytic Fourier component of depth, in a 
time of order (fS)-l. If, on the other hand, ka 9 1, small corrections to + and the 
frequency exist. The sizes of these corrections are, as might have been anticipated 

The appropriate small parameter for this procedure is thus SR/L, which, as 
before, is not the same as the ratio of topographic to equivalent$ slope. This 
perturbation approach can only yield a slight distortion of the large-scale stream- 
lines, meaning that the conclusion by Robinson & Stommel(1959), that rough- 
ness greatly intensifies the currents due to an imposed Rossby wave and that the 
Rossby wave can even then propagate intact, is invalid. They made use of this 
same perturbation scheme, but introduced errors by taking the depth to be a 
complex function of x and y, and misjudging the size of the correction terms. It 
is important to observational work to know this: if a field of small (say L N 50 km 
wide) eddies is found, which submit to the assumptions of this sort of theory, our 
arguments imply that they cannot be a long Rossby wave in disguise. Specifi- 
cally, our earlier discussion of the length scales implies that the energy flux due 
to such eddies should not greatly exceed 8jSL (a being the energy density), 

At the second order in the above perturbation sequence a frequency correction 
must be made, analogous to the self-interaction or 'Stokes' correction. It reveals 
the first change in the group velocities. Without presenting the details, which are 
straightforward, the result for isotropic roughness is 

OJ = ($0) (1 + ~r2,m.s./2w(o)2), 

where oo is the uncorrected Rossby frequency and 6t.m,s. the variance of the 
depth. This agrees with the superposition of earlier results. The formula already 
shows a reduced group velocity, equal to 

An exact solution 

The analysis for continuous three-dimensional depth profiles is so difficult that 
it seems worthwhile to present a simple solution even though the shape of the 
topography is rather peculiar. It provides more fuel for arguments against the 
ability of rough topography to transmit energy quickly. 
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FIGURE 7. (a) The bottom profile h = Hexp(e-%iny), x >, 0. ( b )  The dispersion relation 
for waves over the above profile. I is the y wavenumber. The number of nodes parallel to 
the coast is indicated. 

Equation (2.1) can, for a special class of topography, be reduced to a membrane 
vibration problem. Iff  is a constant, (2.1) becomes 

as long as h(x, y) satisfies 

The dependent variables are related by 

V2$ +P(Z,  Y) 9 = 0 

v ~ K  = O,  K = In h. 

where the functions of integration a(y)  and b(x) are chosen to make the two 
expressions equal. The new coefficient is 

p = I[(&J--Z- 4 1) lVfil21 

(if the term Vh-1 .V+ is neglected in (2.1), yet ,8 retained with f held constant, 
a similar reduction is possible). The substitution is akin $0 the familiar procedure 
that removes the first-derivative term from a second-order ordinary differential 
equation. Since harmonic functions are not a complete set, the reduction is far 
from being a general one. 

We choose the depth dependence 

h = H exp (e-" sin y), 

representing large undulating variations in depth in x < 1. At x = 0 the range of h 
is 2.35H, but as x+ co the bottom becomes flat (figure 7 a). 

Since lV&l2 = e c 2 X  the equation becomes separable: 

V2q5 + I $(w-2- 1) e-wI q5 = 0. 

$ = e i f g  ' Z l ( K e - x ) ,  

K 2 = 1 0  2 where 4( - -1 )  

The solutions are of the form 
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and %?&) is one of the solutions of Bessel’s equation. The stream function has 
unbounded variation as x --f - co, so we exclude the left half-space with a ‘coast ’ 
at x = 0, on which $ vanishes. Then the physical domain corresponds t.0 the 
interval 0 < Z < K ,  2 = Ke-”. 

The full solution is then 
?Jr = AB, 

A = h&e-ihy12~, 

E ,  = e-”siny, 

B = eilYJ,(Ke-x), 

u2 = 1 / ( 4 ~ ~ +  1). 

With the boundary condition JJK)  = 0, the dispersion relation is determined, as 
shown in figure 7 (b ) .  As with ordinary edge waves the modes are distinguished by 
the number of nodes parallel to the coast. The limit Z - t O  gives the highest 
frequency (w = O-20), even though the topography has a small horizontal scale. 
The function A vanes on the topographic scale, while the y dependence of B may 
occur on any scale. This happened also withoscillations over a corrugated bottom, 
but here the variation on the topographic scale is much stronger; near the ‘coast’ 
the variations of A almost obscure those of B. 

In  spite of the complex shape of the eigenfunctions, the quantity aw/aZ does 
have meaning as a propagation velocity of energy along the coast. The greatest 
value occurs for 1 -t 0, at  which point ao/al N - 0.12 (energy and phase always 
move in the sense of a Kelvin wave). This is of the same order as w x scale of 
topography, rather than w x wavelength, indicating that in an energetic sense 
no long waves are possible in this system. The scale estimates of frequency 
(w  5 6) were intended for small deviations from the mean depth, 6 < 1, Never- 
theless, @from this topography is about 0.4 at the coast, and vanishes for large x; 
the waves seem thus to average the topographic heights beneath them, in 
selecting their natural frequency. 

Bounds and estimates for the frequencies 

It is shown in the appendix that, for arbitrary bottom topography, the set of 
quasi-geostrophic waves $(x, y) e+fot in a basin closed by vertical walls form an 
orthogonal set. In  practice, the calculation of the response to wind stress by 
decomposition into normal modes is viable only with smooth slopes, or not at all. 
Here, with a very rough bottom, the eigenfunctions will have complicated spatial 
structure which is very sensitive to the exact eigenfrequency, and owing to their 
inefficient energy-carrying properties, these modes may be difficult to excite in 
totality. 

Nevertheless, the variational principle (A 2) is revealing. Taking ,8 = 0, (A 2) 
becomes 

0 < I W P ) l m a r  

To O(6)  this is 

where H is the mean depth. Including /3 the analogous result is 

to O(6) + O(L/R). 
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This upper bound agrees closely with the actual frequencies encountered in the 
special cases above, and also with abrupt topographic ridges, steps and sea- 
mounts. It is evidence that there is indeed some insensitivity of the natural 
frequencies of response to the precise horizontal structure of the bottom. 

A number of computer experiments have been performed by Rhines and 
assembled into a movie. These show linear waves over topography of varying 
complexity, and give further weight to the estimate o w 1, where 6 is rather 
locally determined (and not globally averaged), to the slowness of energy propa- 
gation over roughness, and to quantifying the view, discussed below, that the 
fluid participates in a wavenumber cascade from small, initially imposed, wave- 
numbers to those of the dominant bottom roughness. 

Weakly-coupled seamounts 

We have not yet exhausted the analytical possibilities. An approach (given here 
in outline only) can be made by starting from a set of normal modes representing 
oscillations trapped about individual seamounts and islands. If the features are 
sparsely distributed (say an average distance D apart) on an otherwise flat 
bottom, the coupling parameter a/D < 1, where a is now the typical seamount 
radius, and a perturbation expansion in a/D is sensible. With Rossby waves 
present this resembles the problem (Rhines 1969) of scattering from isolated 
potential wells; it gives another illustration of conversion of large-scale incident 
energy into small-scale oscillations (and resonances are possible, for which the 
topographically induced currents are stronger than those of the Rossby wave 
that created them, but the relevance of such resonances to the ocean remains 
moot). 

If we restrict the fluid length scales to be small, however, Rossby waves will 
locally be subordinate to anf-plane effect, the gradual leakage of energy from one 
seamount to the next. The full equation, neglecting ,8, is 

For instance, if 

where the 8, are a random set of seamounts, 

v . (h-lV&) -f(V$ x Vh-1) . f = 0. 

h(z, y) = H (  14- GI;Aihh&, y ) ) ,  1 4 1, 

then the first approximation is a set of independent oscillations : 

$ = ZBi@$ (B, arbitrary), 

C exp (idi - @Jot) 4(a*ri)/4(a*ai), ri < a,, 
@. = s<o 

exp (isf?, - wiBfOt) (r,/a,J-lsl, r, > a,, l?<o 
where (ri, f?$) are polar co-ordinates centred on the ith seamount. The eigenvalues 
ais allow the matching of velocity components at  ri = a,. The corresponding 
eigenfrequencies densely populate w < 6 (Rhines 1969): 

wis = - 2 S i S / ( a i s U ) 2 ,  



600 P. R h i m  and F. Bretherton 

for small paraboloidal seamounts. Now at the next order in a/D the oscillation at  
the ith seamount is felt by its nearest neighbours. Suppose that all of the energy 
initially lay at  a single seamount with i = 1 and s = - 1. Then the neighbours, 
with i = j, would feel a broad, slowly oscillating current, and respond according to 

V . [h-lV(alC.,/l%)] - fo(V@j x V i ~ l )  .P = fo(V$l x V&l) . P, 
where the forcing function is 

Dj,  is the distance between seamounts and +jl the bearing of the first relative to 
the jth. The solutions for the @j show a typical resonance structure favouring 
lowest modes (those with s = - 1 and the fewest nodes) and frequencies near that 
of the forcing. The amplitude is small, O(a/D), unless the primary oscillation is at  
a frequency within O(a/D) of an eigenfrequency of its neighbour. Then secular 
growth of the neighbouring oscillation occurs until it (and others like it) drains 
pi of its energy. A computer experiment with a pair of identical seamounts 
showed a trading of energy back and forth, just as with weakly coupled 
mechanical oscillators. Clearly, energy transmission under these dynamics would 
resemble percolation more than propagation. 

An analogous problem in solid-state physics 
A wave-propagation problem with broadly similar features concerns the vibra- 
tion of atomic lattices. One class of phenomena occurs when high-energy particles 
are projected toward a regular lattice, which is modelled as a periodic variation 
in the potential field. Scattering is strongest when resonance between the incident 
wave function and the lattice periodicity is satisfied. But these effects, which are 
very sensitive to the strict periodicity of the medium, normally belong in the 
lower part of figure 1, where weak resonant interactions occur. 

In  another class of problem, the atomic lattice is riddled with impurities, and 
may have a glass-like disorder. As we have found here, the problem is most tract- 
able when the medium varies in one direction only. Dean (1967) discusses vibra- 
tions of one-dimensional atomic chains, in which the neglect of all but nearest- 
neighbour interactions leads to a simple wave difference equation, essentially 
a classical lumped-mass model of a vibrating string. 

Figure 8, reproduced from Dean's review paper, shows the result of a computer 
experiment with a long (250000 element) equally spaced chain of two atomic 
species mixed at random (the mass ratio of the two species is 2 : 1). The ordinate 
of the figure is the number density C(w2) of vibrational modes [of time dependence 
exp ( - iot )]  with respect to frequency squared, w2. At lower frequencies the curve 
is smooth, as is appropriate to long waves that average over the irregularities. 
There, the modes occur at equal intervals of wavenumber k and behave like 
exp ( ikx ) ;  G(w) is just (nw aw/ak)-l. Asthescale of thewaves decreases to the order 
of the atomic spacing, the modal density becomes very complex. Peaks appear, 
corresponding to particularly likely, localized vibrations of clusters of light atoms 
in a heavy local environment. The spatial structure thus becomes complex, and 



Topographic Rossby waves 60 1 
I 

? 
3 
6- 

1 0 4 + t I 

6 9  

FIGURE 8. From Dean (1967), the distribution of eigenmodes with respect to frequency 
squared, for a long disordered chain of atoms: two atomic species present, of mass ratio 2 : 1. 
Much fine structure has been suppressed by the numerical technique. 

energy propagates more slowly and less simply. Similarly, in the present problem, 
sufficiently long Rossby waves can exist by averaging over the irregularities in 
depth, while shorter waves become trapped in a small region in space. Analogous 
to the peaks in C(w2), where many modes cluster in a narrow frequency band, is 
the flatness of the dispersion curves in figures 6 and 7 and the attendant small 
group velocity (in regions where it is meaningful). 

The inclusion of more than just two species of atom would blur the peaks in 
figure 8, but with the physical nature of the short-wave region remaining the 
same. If, on the other hand, the number of species were kept a t  two, while their 
mass ratios were increased, more and more of the spectrum would be occupied by 
‘trapped’ oscillations (Domb et al. 1959) of light atoms ‘bounded’ by heavy 
atoms. This is the analogue of an increasingly rough-bottomed ocean. 

4. Conclusions 
We have illustrated the dependence of waves, initially set into motion with 

a length scale L, on the scale a of the depth variations. Simplifying the latter 
into three ranges, we called scales for which a 4 L roughness, for which a w L 
undulations, and for which a S L slope. The p-effect in a homogeneous fluid 
of course acts like a slope II HIR = 0.6 x lods cot A, for a mean depth H of 
4 km. 

The problems treated were (a) two-dimensional sinusoidal ‘roughness ’, alone, 
for which w N 6; (b )  a sinusoid with a slope, where the competition between 
Rossby waves and ‘corrugation’ waves was decided simply by the size of 
6/6810pe, Sslope being the net change in depth over the wave scale L, or by SRIL 
with the /3-effect; (c) motion forced by wind stress, which yielded the usual 
resonance structure relative to the natural wave frequencies (the currents, as 
above, had about half their energy in very small eddies, demonstrating the shift 
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in dominant scale from that of the driving to that of the topography); (d) two- 
dimensional undulations, which again had w N S (in a sense these oscillations 
wholly at the topographic scale are the gravest and most important over a very 
uneven bottom); ( e )  very slight, three-dimensional roughness; (f) an exact solu- 
tion for a particular undulating sloping bottom (covering the entire range of 
L/a) ,  which demonstrated that over strong three-dimensional irregularities the 
effective scale of the wave relevant to  energy propagation is that of the topo- 
graphy, so that the energy velocity N fSa more nearly than fS x (initially imposed 
scale of motion); (9) upper bounds for the frequency, which were found to be close 
to those in nunierous analytical cases (w 5 S+ LIR); (h) another approach to the 
problem of ‘undulations’, in which trapped oscillations about seamounts were 
weakly coupled; and finally, (i) the identification of analogous behaviour in the 
vibrations of irregular atomic lattices. 

It is apparent that the topographic, u . Vh, term raises many of the same 
problems as does the nonlinear u . VU term in the equations of motion. There is 
an analogy in that proceeding from the periphery of figure 1 to its centre (i.e. from 
slight or gradual, to rough topography) is rather like proceeding from the linear- 
ized theory of parallel-flow instability, say, towards the turbulent regime. In  the 
more tractable, peripheral areas, individual Fourier components of the perturba- 
tion flow are only weakly coupled, and provide a basis for refinement, while in 
the central region rapid cascades of energy occur between Fourier modes. 
Analytically, turbulence is all the more difficult owing to the impossibility of 
superposing individual solutions; the present problem is bilinear; any number of 
solutions over the same topography are superposable, yet motion over a complex 
bottom is not the sum of solutions over individual Fourier components. 

In  the peripheral areas of the diagram the weakness of the disturbing topo- 
graphy (or, analogously, shear) puts an emphasis on precise tuning of the phases 
of the Fourier components of the flow which all but vanishes in the turbulent 
region, where the coupling between modes is strong and interactions cease to be 
selective. Scale analysis of the energy-transfer rates between Fourier components 
is a useful tool in turbulence (and seems to work better there, for the lack of phase 
sensitivity). The difficulty found with strongly coupled Fourier components leads 
one to search for a set of normal modes with better endurance (vortex sheets, and 
seamount oscillations, perhaps) but it is fair warning that the immense effort 
applied to turbulence theory does not seem to have advanced us far beyond the 
initial scale and dimensional analysis. Nevertheless, Rhines (in preparation) has 
attempted to view the topographic effect as a homogeneous cascade to  large 
wavenumbers, when the depth variations have a broad spectrum, with logic 
analogous to an early turbulence theory of Oboukhov. This cascade moves solu- 
tions from the left-hand side of figure I towards is centre (one also expects 
generally rightward motion owing to refraction at large wavenumber, ka 9 1, 
for ever smaller group velocities are associated with ever shorter waves). 

The theory has provided some measure of the relative strengthof ‘smooth ’ and 
‘rough’ propagation effects in a barotropic ocean, and may be of help in inter- 
preting complex current-meter and float data. It is likely that the fragmentation 
of currents by bottom roughness is at  least partially responsible for the smallness 
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of the observed energy-containing ocean eddies, for instance in the Sargasso Sea. 
There is also the implication that rough areas, like the western North Pacific, and 
topographic barriers, like the New Zealand Rise, may prevent Rossby-wave 
energy from reaching the western boundary, and hence limit the strength of the 
(barotropic part of the) boundary currents. The detailed results make more 
precise the notion that the equatorial regions, where f is small, are a smooth 
channel for east-west propagation. And the role of the topographic ‘cascade’ in 
providing a sink for large-scale energy is interesting, for geostrophic turbulence 
theory shows that turbulent dissipation by the large-scale horizontal eddies, 
themselves, is hard to come by. 

The effects of density stratification and advection are the subject of recent 
work by Suarez (1971) and Rhines (1970a,b, 1971a,b, 1972). While they intro- 
duce several new effects, the results of the present work still appear relevant to  
geophysical flows. 
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the National Center for Atmospheric Research. Dr W. R. Holland and Dr D. K. 
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when both authors were at the University of Cambridge. 

Appendix. Integral properties 
When the fluid is enclosed in a basin, (2.1) with $ = 0 on the rigid vertical walls 

describes the normal modes ( ~ * )  corresponding to eigenfrequencies (.;t) (the 
vertical walls model the order-one reflexion expected at  the steep face of the 
continental shelf). There exist the following integral properties similar to those 
in simpler eigenvalue problems, even though the exact $n can be very complex 
and the crn very dense, for general h(x, y). The utility of the normal modes, when 
topography dominates the motions, is in doubt, but they may describe the 
largest-scale oscillations of a relatively smooth ocean. In such a case the 
Rayleigh-Ritz procedure might be used with the variational principle given 
below, to study slight topographic effects. We expect, however, that it will 
usually be ill suited to do so. 

The frequencies are real 

Linearized inviscid long waves in a closed basin with a rigid lid conserve total 
kinetic energy, and hence the $n, providing that they exist, have real frequencies. 
This is shown by forming $*9$ + $(9$) *, where 2 is the operator in (2. l),  and 
integrating over the area Y of a basin with a lateral boundary %‘. The result is 
CT = cr*. It is of interest that the approximate equation (in the spirit of the 
Boussinesq approximation) for small depth changes, in which the first h in (2.1) 
is held constant, and f is held constant except where it is differentiated, also 
conserves energy exactly. 
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The velocities are orthogonal with respect to the weighting function h(x, y) 

If we form $~9$n++n(2’$m)*, integrate and apply + = 0 on %, 

- i ( o ~ - o n ) / ~ - l v $ ~ . v + n d x d y  = / / ~ [ ~ ( $ ; . ‘ $ ~ ) + J ( ~ ~ , ~ n ) l d ~ d y  = 0- 

This may be written as 

(crm-crn)/p: .u ,dxdy = 0, 

U, = (V@$.,/h x PI, 

which is a simple extension of Greenspan’s (1965) result for variable f. 
If an initial two-dimensional field of velocity and displacement is imposed on 

the fluid, the formal solution can be written as the sum of normal modes, scaled 
in amplitude by the integrals 

In addition, Greenspan (1965) has shown, for f constant, that when the depth 
contours are closed the steady geostrophic mode 7/r = $(h) absorbs the portion 
of the initial velocity with non-zero circulation about a contour. Here the 
geostrophic mode $( f / h )  serves the same purpose. 

Variational principle for the frequencies 
Such integral expressions for an eigenvalue often show that the system acts to  
make some physical property extreme. We form $: Y$n and integrate, giving 

J J hU,. U: dxdy 

where the horizontal velocity is RZU(x, y) e-i*. 
It may be shown, by expanding the test functions in a series of {$?n}, that the 

true frequencies are maxima of the ratio ( A l )  under slight variations of @ 
everywhere but on %?. 

An upper bound for the highest frequency (the fundamental) now may be 
found. We note that contributions to the numerator of ( A l )  depend on the 
variations of f / h  about its mean, since 

c 
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Letting fo and H be the mean values off and A, the fluctuations of f and h, 

since, by the triangle inequality, 2 1 Up 1 I Ui I < I U,.l + I Ui I 2. For small variations 
i n f  and h, this is a/fo < If/fo-fi/Hlmax. The first term is of order L/R, where L 
is the size of the basin, and represents the Rossby-wave contribution. When 
the topography has isolated features the inequality gives a realistic upper 
bound, describing the trapped oscillations. The same bound applies to a dense 
field of bumps, or to waves on a slope. In  no case is 0- greater thanf,,,. 

Whenfis constant two physical principles follow from (A 1). The first describes 
the net area swept out by the particle orbits. If the displacement vector of a 
particle about the centre of its path is 

r = RZP(x, y) e-id, 

F = - O--l(Ui - iU,) 

and then U x U* = - 4ia[Qr x U]. 

The term in brackets is the rate at  which a particle sweeps out horizontal area in 
time; this is independent of time, so the average area -Ca/Ijh dx dy swept out in 
a period by the fluid particles is proporhional to the numerator of (A 1): 

U, and U, are not perpendicular in general, but the displacements may be 
referred to orthogonal co-ordinates x and y: 

IU 1 
a 

IU I cos at + 2 sin at cos 6, y = 2 sin 0-t sin 6, $=-  IUil 
0- 0- 

where the x axis is taken along Ui, which is inclined to U, at an angle 46. 
Eliminating t from these equations, 

d[x - (cot 4 )  y]2 u2y2 

\uil2 + Iu,.Izsin2+ = 

The particle paths are ellipses skewed with respect to x and y. 
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The square of the radius vector is 

)rI2 = (x2+y2) = a-2()Ui12cos2d+ IUJ2). 

Its average in time is just 

and thus the denominator is 

= 2g2R2, 

where R2 is the mean-square distance of the particles from their centres. The 
variational principle may now be written as 

6~ = 0, w = dlnR2,  w = C T / ~ .  

The frequency thus represents an 'efficiency' of the particles in sweeping out 
net area (positive orbits cancel negative ones), which the system strives to make 
a maximum. 

It does not, however, manage very well. Regardless of the dynamics, a periodic 
two-dimensional field with a perfectly constant depth and rigid side walls sweeps 
out no net area a t  all, since fsJ($, $*) dxdy = 0. 

As shown above, a,,,, rather than I, is the upper bound of u/f. 

terizes the motion. Still holdingf constant, we may write (A 1) as 
AparC from this interpretation the integrals give an invariant which charac- 

The numerator is proportional to J ,  the average angular momentum of particles 
about their orbital centres (evaluated in the rotating system). The denominator 
is just T ,  proportional to the kinetic energy, averaged over all the particles. The 
invariant is thus 

JIT =-2/f, or T+QJ= 0, Q = if, 
a fact which could have been deduced from a more general result of Lamb (1945, 
$5 203 ff ). 
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F"I(:URE 3. Reproductiori, by firiitc-tliflforHrico iritcgratiorl, of waves over a siriusoitl. 
(a )  Contours of the bottom corrugations. ( b )  $h, or pressure, U8. t,ime at a. firxd position, R I I ~  

oriarrt,atiori of succeeding parts of figure. ( c )  triitial streamlines at t = 0. (d )  Short~lv after 
begiruiing of fifth pcriod ( t  = 480 arbitrary units). ( e )  t = 490. ( f )  t = 500. ( 9 )  t = ,520. 
(h )  t = 630.  Solid contours are positive. dashed contours ricgative. 
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